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ABSTRACT

We prove an analogous of Stein theorem for rational functions in several

variables: we bound the number of reducible fibers by a formula depending

on the degree of the fraction.

1. Introduction

Let K be an algebraically closed field. Let f = p/q ∈ K(x), with x =

(x1, . . . , xn), n > 2 and gcd(p, q) = 1, the degree of f is

deg f = max{deg p, deg q}.

We associate to a fraction f = p/q the pencil p− λq, λ ∈ K̂ (where we denote

K̂ = K ∪ {∞} and by convention if λ = ∞ then p− λq = q).

For each λ ∈ K̂ write the decomposition into irreducible factors

p− λq =

nλ
∏

i=1

F ri

i .

The spectrum of f is σ(f) = {λ ∈ K̂ : nλ > 1}, and the order of reducibility

is ρ(f) =
∑

λ∈K̂
(nλ − 1).

A fraction f is composite if it is the composition of a univariate rational

fraction of degree more than 1 with another rational function.
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Theorem 1.1: Let K be an algebraically closed field of characteristic 0. Let

f ∈ K(x) be noncomposite then

ρ(f) < (deg f)2 + deg f.

A theorem of Bertini and Krull implies that if f is noncomposite then σ(f)

is finite and we should notice that #σ(f) 6 ρ(f). Later on, for an algebraically

closed field of characteristic zero and for a polynomial f ∈ K[x, y], Stein [St]

proved the formula ρ(f) < deg f . This formula has been generalized in several

directions, see [Na1] for references. For a rational function f ∈ C(x, y) a conse-

quence of the work of Ruppert [Ru] on pencil of curves, is that #σ(f) < (deg f)2.

For K algebraically closed (of any characteristic) and f ∈ K(x, y) Lorenzini [Lo]

proved under geometric hypotheses on the pencil (p−λq) that ρ(f) < (deg f)2.

This has been generalized by Vistoli [Vi] for a pencil in several variables for an

algebraically closed field of characteristic 0.

Let us give an example extracted from [Lo]. Let f(x, y) = x3+y3+(1+x+y)3

xy(1+x+y) ,

then deg(f) = 3 and σ(f) = {1, j, j2,∞} (where {1, j, j2} are the third roots

of unity). For λ ∈ σ(f), (f = λ) is composed of three lines hence ρ(f) = 8 =

(deg f)2 − 1. Then Lorenzini’s bound is optimal in two variables.

The motivation of this work is that we develop the analogous theory of

Stein for rational functions: composite fractions, kernels of Jacobian deriva-

tives, groups of divisors, . . . The method for the two variables case is inspired

from the work of Stein [St] and the presentation of that work by Najib [Na1].

Even the proofs similar to the ones of Stein have been included for complete-

ness. Another motivation is that with a bit more effort we get the case of several

variables by following the ideas of [Na1] (see the articles [Na2], [Na3]).

In §2, we prove that a fraction is noncomposite if and only its spectrum is

finite. Then in §3, we introduce a theory of Jacobian derivation and compute

the kernel. Next, in §4, we prove that for a noncomposite fraction in two

variables ρ(f) < (deg f)2 + deg f . Finally, in §5, we extend this formula to

several variables and we close by stating a result for fields of any characteristic.

Acknowledgements. I wish to thank Pierre Dèbes and Salah Najib for dis-

cussions and encouragements.
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2. Composite rational functions

Let K be an algebraically closed field. Let x = (x1, . . . , xn), n > 2.

Definition 2.1: A rational function f ∈ K(x) is composite if there exist g ∈

K(x) and r ∈ K(t) with deg r > 2 such that

f = r ◦ g.

Theorem 2.2: Let f = p/q ∈ K(x). The following assertions are equivalent:

(1) f is composite;

(2) p− λq is reducible in K[x] for all λ ∈ K̂ such that deg p− λq = deg f ;

(3) p− λq is reducible in K[x] for infinitely many λ ∈ K̂.

Before proving this result we give two corollaries.

Corollary 2.3: f is noncomposite if and only if its spectrum σ(f) is finite.

One aim of this paper is to give a bound for σ(f). The hard implication of

this theorem (3) ⇒ (1) is in fact a reformulation of a theorem of Bertini and

Krull.

We also give a nice application pointed out to us by P. Débes.

Corollary 2.4: Let p ∈ K[x] irreducible. Let q ∈ K[x] with deg q < deg p

and gcd(p, q) = 1. Then for all but finitely many λ ∈ K, p− λq is irreducible

in K[x].

Convention: When we define a fraction F = P/Q we will assume that

gcd(P,Q) = 1.

We start with the easy part of Theorem 2.2:

Proof. (2) ⇒ (3) is trivial. Let us prove (1) ⇒ (2). Let f = p/q be a composite

rational function. There exist g = u/v ∈ K(x) and r ∈ K(t) with k = deg r > 2

such that f = r◦g . Let us write r = a/b. Let λ ∈ K̂ such that deg a−λb = deg r

and factorize a(t)−λb(t) = α(t− t1)(t− t2) · · · (t− tk), α ∈ K∗, t1, . . . , tk ∈ K.

Then,

p− λq = q · (f − λ) = q ·

(

a− λb

b

)

(g) = αq
(g − t1) · · · (g − tk)

b(g)
.
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Then by multiplication by vk at the numerator and denominator we get

(p− λq) · (vkb(g)) = αq(u − t1v) · · · (u− tkv),

which is a polynomial identity. As gcd(a, b) = 1, gcd(u, v) = 1 and gcd(p, q) = 1

then u− t1v, . . . , u− tkv divide p− λq. Hence p− λq is reducible in K[x].

Let us reformulate the Bertini–Krull theorem in our context from [Sc, Theo-

rem 37]. It will enable us to end the proof of Theorem 2.2.

Theorem 2.5 (Bertini–Krull): Let F (x, λ) = p(x) − λq(x) ∈ K[x, λ] an irre-

ducible polynomial. Then the following conditions are equivalent:

(1) F (x, λ0) ∈ K[x] is reducible for all λ0 ∈ K such that degx F (x, λ0) =

degx F .

(2) (a) either there exist φ, ψ ∈ K[x] with degx F > max{degφ, degψ},

and ai ∈ K[λ], such that

F (x, λ) =
n

∑

i=0

ai(λ)φ(x)n−iψ(x)i;

(b) or char(K)=π > 0 and F (x, λ)∈K[xπ, λ], where xπ =(xπ
1 , . . . , x

π
n).

We now end the proof of Theorem 2.2:

Proof. (3) ⇒ (1) Suppose that p− λ0q is reducible in K[x] for infinitely many

λ0 ∈ K̂; then it is reducible for all λ0 ∈ K such that degx F (x, λ0) = degx F

(see Corollary 3 of Theorem 32 of [Sc]). We apply Bertini–Krull theorem

Case (a): F (x, λ) = p(x) − λq(x) can be written as

p(x) − λq(x) =
n

∑

i=0

ai(λ)φ(x)n−iψ(x)i.

So we may suppose that for i = 1, . . . , n, degλ ai = 1, let us write ai(λ) =

αi − λβi, αi, βi ∈ K. Then

p(x) =

n
∑

i=0

αiφ(x)n−iψ(x)i = φn

n
∑

i=0

αi

(ψ

φ

)i

(x),

and

q(x) =
n

∑

i=0

βiφ(x)n−iψ(x)i = φn

n
∑

i=0

βi

(ψ

φ

)i

(x).
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If we set g(x) = ψ(x)/φ(x) ∈ K[x], and r(t) =
∑ n

i=0
αit

i

∑

n
i=0

βiti then p
q
(x) = r ◦ g.

Moreover as degx F > max{degφ, degψ} this implies n > 2 so that deg r > 2.

Then p/q = f = r ◦ g is a composite rational function

Case (b): Let π = char(K) > 0 and F (x, λ) = p(x) − λq(x) ∈ K[xπ, λ], For

λ = 0 it implies that p(x) = P (xπ), then there exists p′ ∈ K[x] such that p(x) =

(p′(x))π. For λ = −1 we obtain s′ ∈ K[x] such that p(x) + q(x) = (s′(x))π.

Then q(x) = (p(x)+q(x))−p(x) = (s′(x))
π
− (p′(x))

π
= (s′(x) − p′(x))

π
. Then

if we set q′ = s′− p′ we obtain q(x) = (q′(x))
π
. Now set r(t) = tπ and g = p′/q′

we get f = p/q = (p′/q′)
π

= r ◦ g.

3. Kernel of the Jacobian derivation

We now consider the two variables case and K is an uncountable algebraically

closed field of characteristic zero.

3.1. Jacobian derivation. Let f, g ∈ K(x, y), the following formula:

Df (g) =
∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
,

defines a derivation Df : K(x, y) → K(x, y). Notice the Df (g) is the determi-

nant of the Jacobian matrix of (f, g). We denote by Cf the kernel of Df :

Cf = {g ∈ K(x, y) : Df (g) = 0} .

Then Cf is a subfield of K(x, y). We have the inclusion K(f) ⊂ Cf . Moreover,

if gk ∈ Cf , k ∈ Z \ {0} then g ∈ Cf .

Lemma 3.1: Let f = p/q, g ∈ K(x, y). The following conditions are equivalent:

(1) g ∈ Cf ;

(2) f and g are algebraically dependent;

(3) g is constant on irreducible components of the curves (p − λq = 0) for

all but finitely many λ ∈ K̂;

(4) g is constant on infinitely many irreducible components of the curves

(p− λq = 0), λ ∈ K̂.

Corollary 3.2: If g ∈ Cf is not a constant then Cf = Cg.

Proof. • (1) ⇔ (2). We follow the idea of [Na1] instead of [St]. f and

g are algebraically dependent if and only if transcKK(f, g) = 1. And
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transcKK(f, g) = 1 if and only if the rank of the Jacobian matrix of

(f, g) is less or equal to 1, which is equivalent to g ∈ Cf .

• (2) ⇒ (3). Let f and g be algebraically dependent. Then there exists

a two variables polynomial in f and g that vanishes. Let us write

n
∑

i=0

Ri(f)gi = 0

where Ri(t) ∈ K[t]. Let us write f = p/q, g = u/v and Rn(t) =

α(t− λ1) · · · (t− λm). Then

n
∑

i=0

Ri

(p

q

) (u

v

)i

= 0, hence

n
∑

i=0

Ri

(p

q

)

uivn−i = 0.

By multiplication by qd for d = max{degRi} (in order that qdRi(p/q)

are polynomials) we obtain

qdRn

(

p/q
)

un = v
(

−qdRn−1

(

p/q
)

un−1 − · · ·
)

.

As gcd(u, v) = 1 then v divides the polynomial qdRn(p
q
), then v divides

qd−m(p − λ1q) · · · (p − λmq). Then all irreducible factors of v divide q

or p− λiq, i = 1, . . . ,m.

Let λ /∈ {∞, λ1, . . . , λm}. Let Vλ be an irreducible component of

p− λq, then Vλ ∩ Z(v) is zero dimensional (or empty). Hence v is not

identically equal to 0 on Vλ. Then for all but finitely many (x, y) ∈ Vλ

we get
n

∑

i=0

Ri(λ)g(x, y)
i = 0.

Therefore, g can only reach a finite number of values c1, . . . , cn (the

roots of
∑n

i=0Ri(λ)t
i). Since Vλ is irreducible, g is constant on Vλ.

• (3) ⇒ (4). Clear.

• (4) ⇒ (1). We first give a proof that if g is constant along an irreducible

component Vλ of (p− λq = 0) then Df(g) = 0 on Vλ (we suppose that

Vλ is not in the poles of g). Let (x0, y0) ∈ Vλ and t 7→ p(t) be a local

parametrization of Vλ around (x0, y0). By the definition of p(t), we have

f(p(t)) = λ, this implies that
〈

dp

dt
| grad f

〉

=
d(f(p(t))

dt
= 0,



Vol. 164, 2008 REDUCIBILITY OF RATIONAL FUNCTIONS 339

and by hypotheses g is constant on Vλ this implies that g(p(t)) is con-

stant and again:
〈

dp

dt
| grad g

〉

=
d(g(p(t))

dt
= 0.

Then gradf and gradg are orthogonal around (x0, y0) on Vλ to the same

vector, as we are in dimension 2, this implies that the determinant of

Jacobian matrix of (f, g) is zero around (x0, y0) on Vλ. By extension

Df (g) = 0 on Vλ.

We now end the proof: If g is constant on infinitely many irreducible

components Vλ of (p−λq = 0) this implies that Df(g) = 0 on infinitely

many Vλ. Then Df (g) = 0 in K(x, y).

3.2. Group of the divisors. Let f = p/q, let λ1, . . . , λn ∈ K̂, we denote by

G(f ;λ1, . . . , λn) the multiplicative group generated by all the divisors of the

polynomials p− λiq, i = 1, . . . , n.

Let

d(f) = (deg f)2 + deg f.

Lemma 3.3: Let F1, . . . , Fr ∈ G(f ;λ1, . . . , λn). If r > d(f) then there exists a

collection of integers m1, . . . ,mr (not all equal to zero) such that

g =

r
∏

i=1

Fmi

i ∈ Cf .

Proof. Let µ /∈ {λ1, . . . , λn}, and let S be an irreducible component of (p−µq =

0). Let S̄ be the projective closure of S. The functions Fi restricted to S̄ have

their poles and zeroes on the points at infinity of S or on the intersection

S ∩ Z(Fi) ⊂ Z(p) ∩ Z(q).

Let n : S̃ → S̄ be a normalization of S̄. The inverse image under normalisa-

tion of the points at infinity are denoted by {γ1, . . . , γk}, their number verifies

k 6 degS 6 deg f .

At a point δ ∈ Z(p)∩Z(q), the number of points of n−1(δ) is the local number

of branches of S at δ then it is less or equal than ordδ(S), where ordδ(S) denotes

the order (or multiplicity) of S at δ (see e.g., [Sh], paragraph II.5.3). Then

#n−1(δ) 6 ordδ(S) 6 ordδ Z(p− µq) 6 ordδ Z(p− µq) · ordδ Z(p)

6 multδ(p− µq, p) = multδ(p, q)
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where multδ(p, q) is the intersection multiplicity (see, e.g., [Fu]). Then by

Bézout theorem
∑

δ∈Z(p)∩Z(q)

#n−1(δ) 6
∑

δ∈Z(p)∩Z(q)

multδ(p, q) 6 deg p · deg q 6 (deg f)2.

Then the inverse image under normalisation of
⋃r

i=1 S ∩ Z(Fi) denoted by

{γk+1, . . . , γℓ} have less or equal than (deg f)2 elements. Notice that ℓ 6 deg f+

(deg f)2 = d(f).

Now let νij be the order of Fi at γj (i = 1, . . . , r; j = 1, . . . , ℓ). Consider

the matrix M = (νij). Since the degree of the divisor (Fi) (seen over S̃) is

zero we get
∑ℓ

j=1 νij = 0, for i = 1, . . . , r, that means that columns of M are

linearly dependent. Then rkM < ℓ 6 d(f), by hypothesis r > d(f). Then the

rows of M are also linearly dependent. Let m1(µ, S), . . . ,mr(µ, S) such that
∑r

i=1mi(µ, S)νij = 0, j = 1, . . . , ℓ.

Consider the function gµ,S =
∏r

i=1 F
mi(λ,S)
i . This function is regular and

does not have zeroes or poles at the points γj , because
∑r

i=1mi(µ, S)νij = 0.

Then gµ,S is constant on S.

This construction gives a map (µ, S) 7→ (m1(µ, S), . . . ,mr(µ, S)) from K

to Zr . Since K is uncountable, there exists infinitely many (µ, S) with the

same (m1, . . . ,mr). Then the function g =
∏r

i=1 F
mi

i is constant on infinitely

many components of curves of (p − µq = 0) and by Lemma 3.1 this implies

g ∈ Cf .

3.3. Noncomposite rational function. Let f = p/q. Let G(f) be the

multiplicative group generated by all divisors of the polynomials p− λq for all

λ ∈ K̂. In fact we have

G(f) =
⋃

(λ1,...,λn)∈Kn

G(f ;λ1, . . . , λn).

Definition 3.4: A family F1, . . . , Fr ∈ G(f) is f-free if (m1, . . . ,mr) ∈ Zr is

such that
∏r

i=1 F
mi

i ∈ Cf then (m1, . . . ,mr) = (0, . . . , 0).

A f -free family F1, . . . , Fr ∈ G(f) is f-maximal if for all F ∈ G(f),

{F1, . . . , Fr, F} is not f -free.

Theorem 3.5: Let f ∈ K(x, y), deg f > 0. Then the following conditions are

equivalent:

(1) deg f = min {deg g : g ∈ Cf \K};
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(2) σ(f) is finite;

(3) Cf = K(f);

(4) f is noncomposite.

Remark 3.6: This does not give a new proof of “σ(f) is finite ⇔ f is non-

composite” because we use Bertini–Krull theorem.

Remark 3.7: The proof (1) ⇒ (2) is somewhat easier than in [St], whereas (2)

⇒ (3) is more difficult.

Proof.

• (1) ⇒ (2). Let us suppose that σ(f) is infinite. Set f = p/q, with

gcd(p, q) = 1. For all α ∈ σ(f), let Fα be an irreducible divisor of p−αq,

such that degFα < deg f . By Lemma 3.3 there exists a f -maximal

family {F1, . . . , Fr} with r 6 d(f). Moreover, r > 1 because {Fα} is

f -free: if not there exists k 6= 0 such that F k
α ∈ Cf then Fα ∈ Cf , but

degFα < deg f that contradicts the hypothesis of minimality.

Now, the collection {F1, . . . , Fr, Fα} is not f -free, so that there exist

integers {m1(α), . . . ,mr(α),m(α)}, with m(α) 6= 0, such that

F
m1(α)
1 · · ·Fmr(α)

r · Fm(α)
α ∈ Cf .

Since σ(f) is infinite then it is equal to K̂ minus a finite number of

values (see Theorem 2.2), σ(f) is uncountable and the map

α 7→ (m1(α), . . . ,mr(α),m(α))

is not injective. Let α 6= β such that mi(α) = mi(β) = mi, i =

1, . . . , r and m(α) = m(β) = m. Then Fm1

1 · · ·Fmr
r · Fm

α ∈ Cf and

Fm1

1 · · ·Fmr
r · Fm

β ∈ Cf , it implies that (Fα/Fβ)m ∈ Cf , therefore,

Fα/Fβ ∈ Cf .

Now, degFα/Fβ < deg f , then by the hypothesis of minimality,

Fα/Fβ is a constant. Let a ∈ K∗ such that Fα = aFβ , by defini-

tion Fα divides p − αq, but, moreover, Fα divides p − βq (as Fβ do).

Then as Fα divides both p − αq and p − βq, Fα divides p and q, that

contradicts gcd(p, q) = 1.

• (2) ⇒ (3). Let f = p/q, σ(f) finite and g ∈ Cf , we aim at proving that

g ∈ K(f). The proof will be done in several steps:
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(a) Reduction to the case g = u/qℓ. Let g = u/v ∈ Cf , then f

and g are algebraically dependent, then there exists a polynomial

in f and g that vanishes. As before let us write
n

∑

i=0

Ri(f)gi = 0,

where Ri(t) ∈ K[t]. As f = p/q, g = u/v then

n
∑

i=0

Ri

(p

q

) (u

v

)i

= 0, hence
n

∑

i=0

Ri

(p

q

)

uivn−i = 0.

By multiplication by qd for d = max{degRi} (in order that all

qdRi(p/q) are polynomials) we get

qdRn

(

p/q
)

un = v
(

−qdRn−1

(

p/q
)

un−1 − · · ·
)

.

Since gcd(u, v) = 1, v divides the polynomial qdRn(p/q); we write

vu′ = qdRn(p/q), then

g =
u

v
=

uu′

qdRn(p/q)
.

But Rn(p/q) ∈ K(p/q) then (uu′)/qd ∈ Cf , but we also have

that g ∈ K(f) if and only if (uu′)/qd ∈ K(f). This proves the

reduction.

(b) Reduction to the case g = qu. Let g = u/qℓ ∈ Cf , ℓ > 0.

As σ(f) is finite by Lemma 3.1 we choose λ ∈ K such that p− λq

is irreducible and g ∈ Cf is constant (equal to c) on p − λq. As

g = u
qℓ ,we have p− λq divides u− cqℓ. We can write

u− cqℓ = u′(p− λq).

Then
u

qℓ
=

u′

qℓ−1

(p

q
− λ

)

+ c.

As u/qℓ and f = p/q are in Cf we get u′/qℓ−1 ∈ Cf ; moreover,

u/qℓ ∈ K(f) if and only if u′/qℓ−1 ∈ K(f). By induction on ℓ > 0

this proves the reduction.

(c) Reduction to the case g = q. Let g = qu ∈ Cf . g is constant

along the irreducible curve (p−λq = 0). Then qu = u1(p−λq)+c1.

Let deg p = deg q. Then qhuh = uh
1 (ph − λqh) (where P h denotes

the homogeneous part of higher degree of the polynomial P ). Then
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ph −λqh divides qhuh for infinitely many λ ∈ K. As gcd(p, q) = 1,

this gives a contradiction.

Hence deg p 6= deg q. We may assume deg p > deg q (otherwise

qu ∈ Cf and p/q ∈ Cf implies pu ∈ Cf ). Then we write

qu = qu1

(

p/q − λ
)

+ c1,

that proves that qu1 ∈ Cf and that qu ∈ K(f) if and only if

qu1 ∈ K(f). The inequality deg p > deg q implies that deg u1 <

deg u. We continue by induction, qu1 = qu2(p/q − λ) + c2, with

deg u2 < deg u1,. . . , until we get deg un = 0 that is un ∈ K∗. Thus

first we have to prove that qun ∈ Cf , that is to say q ∈ Cf , and

secondly that qu ∈ K(f) if and only if q ∈ K(f).

(d) Case g = q. If q ∈ Cf then q is constant along the irreducible

curve (p− λq = 0), then q = a(p− λq) + c, a ∈ K∗. Then

q =
c

1 − a(p/q − λ)
∈ K

(

p/q
)

= K(f).

• (3) ⇒ (4). Let us assume that Cf = K(f) and that f is composite, then

there exist r ∈ K(t), deg r > 2 and g ∈ K(x, y) such that f = r ◦ g. By

the formula deg f = deg r · deg g we get deg f > deg g. Now if r = a/b,

then we have a relation b(g)f = a(g), then f and g are algebraically

dependent, hence by Lemma 3.1, g ∈ Cf . As Cf = K(f), there exists

s ∈ K(t) such that g = s ◦ f . Then deg g > deg f . That yields to a

contradiction.

• (4) ⇒ (1). Assume that f is noncomposite and let g ∈ Cf of minimal

degree. By Corollary 3.2 we get Cf = Cg, then

deg g = min {deg h : h ∈ Cg \K} .

Then by the already proved implication (1) ⇒ (3) for g, we get Cg =

K(g). Then f ∈ Cf = Cg = K(g), and there exists r ∈ K(t) such

that f = r ◦ g, but as f is noncomposite then deg r = 1, hence deg f =

deg g = min {deg h : h ∈ Cf \K}.
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4. Order of reducibility of rational functions in two variables

Let f = p/q ∈ K(x, y); for all λ ∈ K̂, let nλ be the number of irreducible

components of p− λq. Let

ρ(f) =
∑

λ∈K̂

(nλ − 1).

By Theorem 2.2, ρ(f) is finite if and only if f is noncomposite. We give a

bound for ρ(f). Recall that we defined:

d(f) = (deg f)2 + deg f.

Theorem 4.1: Let K be an algebraic closed field of characteristic 0. If f ∈

K(x, y) is noncomposite then

ρ(f) < d(f).

Proof. First notice that K can be supposed uncountable, otherwise it can be

embedded into an uncountable field L and the spectrum in K would be included

in the spectrum in L.

Let us assume that f is noncomposite, then by Theorem 2.2 and its corollary

we have that σ(f) is finite: σ(f) = {λ1, . . . , λr}. We suppose that ρ(f) > d(f).

Let f = p/q. We decompose the polynomials p− λiq in irreducible factors, for

i = 1, . . . , r

p− λiq =

ni
∏

j=1

F
ki,j

i,j ,

where ni stands for nλi
. Notice that since gcd(p, q) = 1 then Fi,j divides p−λiq

but does not divide any of p− µq, µ 6= λi. The collection

{F1,1, . . . , F1,n1−1, . . . , Fr,1, . . . , Fr,nr−1} ,

is included in G(f, λ1, . . . , λr) and contains ρ(f) > d(f) elements, then Lemma

3.3 provides a collection {m1,1, . . . ,m1,n1−1, . . . ,mr,1, . . . ,mr,nr−1} of integers

(not all equal to 0) such that

(1) g =

r
∏

i=1

ni−1
∏

j=1

F
mi,j

i,j ∈ Cf .
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By Theorem 3.5 it implies that g ∈ K(f), then g = u(f)/v(f), where u, v ∈

K[t]. Let µ1, . . . , µk be the roots of u and µk+1, . . . , µℓ the roots of v. Then

g =
u(p/q)

v(p/q)
= α

∏k
i=1

p
q
− µi

∏ℓ
i=k+1

p
q
− µi

so that

(2) g = αqℓ−2k

∏k
i=1 p− µiq

∏ℓ
i=k+1 p− µiq

.

If mi0,j0 6= 0 then by the definition of g, by equation (1) and by equation (2),

we get that Fi0,j0 divides one of the p−µiq or divides q. If Fi0,j0 divides p−µiq

then µi = λi0 ∈ σ(f). If Fi0,j0 divides q then µi = ∞, so that ∞ ∈ σ(f). In both

cases p−λi0q appears in formula (2) at the numerator or at the denominator of

g. Then Fi0,ni0
should appears in decomposition (1), that gives a contradiction.

Then ρ(f) < d(f).

5. Extension to several variables

We follow the lines of the proof of [Na3]. We will need a result that claims that

the irreducibility and the degree of a family of polynomials remains constant

after a generic linear change of coordinates. For x = (x1, . . . , xn) and a matrix

B = (bij) ∈ Gln(K), we denote the new coordinates by B · x:

B · x =

( n
∑

j=1

b1jxj , . . . ,

n
∑

j=1

bnjxj

)

.

Proposition 5.1: Let K be an infinite field. Let n > 3 and p1, . . . , pℓ ∈

K[x1, . . . , xn] be irreducible polynomials. Then there exists a matrix B ∈

Gln(K) such that for all i = 1, . . . , ℓ we get:

• pi(B · x) is irreducible in K(x1)[x2, . . . , xn];

• deg(x2,...,xn) pi(B · x) = deg(x1,...,xn) pi.

The proof of this proposition can be derived from [Sm, Ch. 5, Theorem 3D]

or by using [FJ, Proposition 9.31]. See [Na3] for details.

Now we return to our main result.

Theorem 5.2: Let K be an algebraically closed field of characteristic 0. Let

f ∈ K(x) be noncomposite, then ρ(f) < (deg f)2 + deg f .
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Proof. We will prove this theorem by induction on the number of variables n.

For n = 2, we proved in Theorem 4.1 that ρ(f) < (deg f)2 + deg f .

Let f = p/q ∈ K(x), with x = (x1, . . . , xn). We suppose that f is noncom-

posite. For each λ ∈ σ(f) we decompose p− λq into irreducible factors:

(3) p− λq =

nλ
∏

i=1

F
rλ,i

λ,i .

We fix µ /∈ σ(f). We apply Proposition 5.1 to the polynomials p − µq

and Fλ,i, for all λ ∈ σ(f) and all i = 1, . . . , nλ. Then the polynomials

p(B · x) − µq(B · x) and Fλ,i(B · x) are irreducible in K(x1)[x2, . . . , xn] and

their degrees in (x2, . . . , xn) are equal to the degrees in (x1, . . . , xn) of p − µq

and Fλ,i.

Denote k = K(x1). This is an uncountable field, algebraically closed of

characteristic zero. Now p(B · x) − µq(B · x) is irreducible, then f(B · x) is

noncomposite in k(x2, . . . , xn).

Now equation (3) becomes

p(B · x) − λq(B · x) =

nλ
∏

i=1

Fλ,i(B · x)rλ,i .

Which is the decomposition of p(B · x) − λq(B · x) into irreducible factors in

k(x2, . . . , xn). Then

σ(f) ⊂ σ(f(B · x)),

where σ(f) is a subset of K, and σ(f(B · x)) is a subset of k = K(x1). As nλ

is also the number of distinct irreducible factors of p(B · x) − λq(B · x) we get

ρ(f) 6 ρ(f(B · x)).

Now suppose that the result is true for n− 1 variables. Then for f(B · x) ∈

k(x2, . . . , xn) we get

ρ(f(B · x)) < (deg(x2,...,xn) f(B · x))2 + (deg(x2,...,xn) f(B · x)).

Hence:

ρ(f) 6 ρ(f(B · x))

< (deg(x2,...,xn) f(B · x))2 + (deg(x2,...,xn) f(B · x))

= (deg(x1,...,xn) f)2 + (deg(x1,...,xn) f)

= (deg f)2 + (deg f)
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If for n = 2 we start the induction with Lorenzini’s bound ρ(f) < (deg f)2

we obtain with the same proof the following result for several variables, for K

of any characteristic K and a better bound:

Theorem 5.3: Let K be an algebraically closed field. Let f ∈ K(x) be non-

composite then ρ(f) < (deg f)2.
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University of Lille, 2005.
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